Non-linear leak currents affect mammalian neuron physiology

نویسندگان

  • Shiwei Huang
  • Sungho Hong
  • Erik De Schutter
چکیده

In their seminal works on squid giant axons, Hodgkin, and Huxley approximated the membrane leak current as Ohmic, i.e., linear, since in their preparation, sub-threshold current rectification due to the influence of ionic concentration is negligible. Most studies on mammalian neurons have made the same, largely untested, assumption. Here we show that the membrane time constant and input resistance of mammalian neurons (when other major voltage-sensitive and ligand-gated ionic currents are discounted) varies non-linearly with membrane voltage, following the prediction of a Goldman-Hodgkin-Katz-based passive membrane model. The model predicts that under such conditions, the time constant/input resistance-voltage relationship will linearize if the concentration differences across the cell membrane are reduced. These properties were observed in patch-clamp recordings of cerebellar Purkinje neurons (in the presence of pharmacological blockers of other background ionic currents) and were more prominent in the sub-threshold region of the membrane potential. Model simulations showed that the non-linear leak affects voltage-clamp recordings and reduces temporal summation of excitatory synaptic input. Together, our results demonstrate the importance of trans-membrane ionic concentration in defining the functional properties of the passive membrane in mammalian neurons as well as other excitable cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corrigendum: Non-linear leak currents affect mammalian neuron physiology

[This corrects the article on p. 432 in vol. 9, PMID: 26594148.].

متن کامل

Pacemaker Neuron and Network Oscillations Depend on a Neuromodulator-Regulated Linear Current

Linear leak currents have been implicated in the regulation of neuronal excitability, generation of neuronal and network oscillations, and network state transitions. Yet, few studies have directly tested the dependence of network oscillations on leak currents or explored the role of leak currents on network activity. In the oscillatory pyloric network of decapod crustaceans neuromodulatory inpu...

متن کامل

The effect of lead (Pb2+) on electrophysiological properties of calcium currents in F77 neuron in Helix aspersa

Ion channels are responsible for control of cell function in excitable tissues such as heart and brain and also in organs and tissues traditionally thought to be non- excitable including liver and epithelium. In the present research, the effect of lead (Pb2+) on Ca2+ -dependent action potential and currents was studied in F77 neuronal soma membrane of Helix aspersa. For this purpose, action pot...

متن کامل

A model for neural activity in the absence of external stimuli

We study a stochastic process describing the continuous time evolution of the membrane potentials of finite system of neurons in the absence of external stimuli. The values of the membrane potentials evolve under the effect of chemical synapses, electrical synapses and leak currents. The evolution of the process can be informally described as follows. Each neuron spikes randomly following a poi...

متن کامل

NLF-1 Delivers a Sodium Leak Channel to Regulate Neuronal Excitability and Modulate Rhythmic Locomotion

A cation channel NCA/UNC-79/UNC-80 affects neuronal activity. We report here the identification of a conserved endoplasmic reticulum protein NLF-1 (NCA localization factor-1) that regulates neuronal excitability and locomotion through the NCA channel. In C. elegans, the loss of either NLF-1 or NCA leads to a reduced sodium leak current, and a hyperpolarized resting membrane potential in premoto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015